Research > Search Term: "biofilm"


See our COVID-19 virus research - CLICK HERE


Common Names for Hypochlorous Acid Solutions


  • Electrolytically Generated Hypochlorous Acid
  • Neutral Electrolyzed Water (NEW)
  • Electrolyzed Oxidizing Water (EOW)
  • Electro-chemically Activated Water (ECA)
  • Super-oxidized water (SOW)


Results: 27 published articles


Journal Cover

Microbe(s): Total Microbial Count


Hypochlorous acid (HOCl), a naturally occurring molecule produced by the immune system, is highly active against bacterial, viral, and fungal microorganisms. Moreover, HOCl is active against biofilm and increases oxygenation of the wound site to improve healing. Natural HOCl is unstable through technology, it can be stabilized into an effective topical antiseptic agent. This paper focuses on the of topical stabilized HOCl in wound and scar management for pre, peri, and postproceduresincluding its ability to reduce the occurrence hypertrophic scars and keloids. The role of the product in other skin conditions is beyond the scope of this article. A panel comprising clinicians with experience in cosmetic and surgical procedures met late 2018 to discuss literature search results and their own current clinical experience regarding topical stabilized HOCl. The panel of key opinion leaders in dermatology and plastic surgery defined key insights and consensus statements on the direction of for the product. Topical stabilized HOCl provides an optimal wound healing environment and, when combined with silicone, may be ideal for reducing scarring. Additionally, in contrast to chlorhexidine, HOCl, used as an antiseptic skin preparation, raises no concerns of ocular or ototoxicity. For wound care and scar management, topical stabilized HOCl conveys powerful microbicidal and antibiofilm properties, in addition to potency as a topical wound healing agent. It may offer physicians an alternative to other less desirable wound care measures.



Journal Cover

Microbe(s): Candida albicans


Wound infections involving Candida albicans can be challenging to treat becaof the fungus ability to penetrate wound tissue and form biofilms. The goal of this study was to assess the activity of a hypochlorous acid (HOCl)generating electrochemical scaffold (escaffold) against C. albicans biofilms in vitro and on porcine dermal explants (ex vivo). C. albicans biofilms were grown either on acrylicbottom sixwell plates (in vitro) or on skin tissue excised from porcine ears (ex vivo), and the polarized escaffold was used to generate a continuous supply of low concentration HOCl near biofilm surfaces. C. albicans biofilms grown in vitro were reduced to undetectable amounts within 24 h of escaffold exposure, unlike control biofilms (528 0034 log10 (CFU cm2) P < 00001). C. albicans biofilms grown on porcine dermal explants were also reduced to undetectable amounts in 24 h, unlike control explant biofilms (429 0057 log10 (CFU cm2) P < 00001). There was a decrease in the number of viable mammalian cells (356 64) in uninfected porcine dermal explants exposed to continuous HOClgenerating escaffolds for 24 h compared to explants exposed to nonpolarized escaffolds (not generating HOCl) (P < 005). Our HOClgenerating escaffold is a potential antifungalfree strategy to treat C. albicans biofilms in chronic wounds. Wound infections caused by C. albicans are difficult to treat due to presence of biofilms in wound beds. Our HOCl producing escaffold provides a promising novel approach to treat wound infections caused by C. albicans.



Journal Cover

Microbe(s): Staphylococcus aureus, Pseudomonas aeruginosa


Many antiseptics have been used to treat wounds. To compare the microbicidal efficacy of ClHO (Clortech) with other antiseptics used on wounds, healthy skin and mucous membranes. The microbicidal efficacy of 13 antiseptic products on eight micro-organisms (three Gram-positive three Gram-negative two yeasts) inoculated on organic germ-carriers was studied. In addition, the loss of efficacy against Staphylococcus aureus and Pseudomonas aeruginosa with biofilm was assessed with the six best-performing products. Chlorhexidine (1) had the highest microbicidal effect at 1 min. At 5 min, 500 and 1500 mg/L ClHO showed similar, or better, activity than the other antiseptics studied. The ClHO concentration of 300 mg/L achieved this same efficacy at 10 min. The product that lost the most efficacy due to biofilm was 1 chlorhexidine, while 1 PVP-I and ClHO at either 300 or 500 mg/L were moderately affected by biofilm. The most effective in the presence of biofilm was ClHO at 1500 mg/L. ClHO at mediumlow concentrations (300 or 500 mg/L) is a good antiseptic that can be used on wounds and mucous membranes for 510 min. Lower concentrations of ClHO, as well as of the other antiseptics studied, were less effective or more altered by the biofilm. ClHO at a concentration of 1500 mg/L is very effective in the presence or absence of biofilm that can be used on healthy skin for 5 min.



Journal Cover

Microbe(s): Acinetobacter baumannii, Staphylococcus aureus, Pseudomonas aeruginosa


Biofilm formation causes prolonged wound infections due to the dense biofilm structure, differential gene regulation to combat stress, and production of extracellular polymeric substances. Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa are three difficult-to-treat biofilm-forming bacteria frequently found in wound infections. This work describes a novel wound dressing in the form of an electrochemical scaffold (e-scaffold) that generates controlled, low concentrations of hypochlorous acid (HOCl) suitable for killing biofilm communities without substantially damaging host tissue. Production of HOCl near the e-scaffold surface was verified by measuring its concentration using needle-type microelectrodes. E-scaffolds producing 17, 10 and 7mM HOCl completely eradicated S. aureus, A. baumannii, and P. aeruginosa biofilms after 3hours, 2hours, and 1hour, respectively. Cytotoxicity and histopathological assessment showed no discernible harm to host tissues when e-scaffolds were applied to explant biofilms. The described strategy may provide a novel antibiotic-free strategy for treating persistent biofilm-associated infections, such as wound infections.



Journal Cover

Microbe(s): Staphylococcus aureus, coagulase-negative staphylococci (CNS), Pseudomonas aeruginosa


The purpose of this study was to determine whether a commercial formulation of hypochlorous acid hygiene solution (0.01), Avenova, can destroy existing biofilms formed by ocular clinical bacterial isolates, including blepharitis isolates of Staphylococcus aureus and coagulase-negative staphylococci (CNS), and a keratitis isolate of Pseudomonas aeruginosa. Biofilms grown in bacterial growth media on disposable contact lens cases were challenged with hypochlorous acid hygiene solution. At various time points, surviving bacteria were quantified by serial dilution and colony counts. S. aureus biofilms formed on glass were challenged using a hypochlorous acid hygiene solution, and imaged using vital staining and confocal laser scanning microscopy. Bactericidal activity (3 Log10 99.9) was observed for all tested bacterial species after a 30-minute exposure. S. aureus biofilms had a bactericidal level of killing by 10 minutes (p<0.01), S. capitis by 5 minutes (p<0.001), S. epidermidis by 30 minutes (p<0.001), and P. aeruginosa by 10 minutes (p<0.01). Confocal microscopy and crystal violet staining analysis of bacterial biofilms treated with hypochlorous acid solution both demonstrated that biofilm bacteria were readily killed, but biofilm structure was largely maintained. Hypochlorous acid (0.01) hygiene solution was able to achieve bactericidal levels of killing of bacteria in biofilms, but did not disrupt biofilm structures. Susceptibility of tested staphylococcal blepharitis isolates varied by species, with S. capitis being the most susceptible and S. epidermidis being the least susceptible.



Journal Cover

Microbe(s): Ralstonia Pickettii


Ralstonia Pickettii biofilms are associated with pocket infections following breast implant surgeries. Biofilm protects bacteria most topically applied antimicrobial irrigations. To evaluate the effectiveness of four antimicrobial solutions on the planktonic form and established biofilm of Ralstonia Pickettii grown on 3 different types of silicone breast implants. Time kill assays at clinical concentrations of chlorhexidine gluconate, povidone iodine, triple-antibiotic solution, and a 0.025 hypochlorous acid solution stabilized in amber glass were evaluated. Normal saline was the control. Three types of silicone implants, two with a textured surface and one smooth surface, were in the first five minute soak time. Noncytotoxic, 0.025 hypochlorous acid in normal saline, stabilized in amber glass, successfully eradicated Ralstonia pickettii in planktonic and mature biofilm on three types of silicone implants during initial five minute soak time and may be the preferred antimicrobial solution for pocket lavage. This preliminary study requires further investigation. Leaching and implant compatibility testing is currently in progress.



Journal Cover

Microbe(s): Total Microbial Count


Leaving the abdominal cavity open is a well-described and frequently utilized technique in the treatment of severe intra-abdominal sepsis. Irrigation through a negative pressure wound therapy device is a technique employed to assist in the closure of wounds as well as the reduction of bacterial contamination. Furthermore, hypochlorous acid has been found to be safe and effective in microorganismal elimination from extremity wounds. There is no literature regarding the infusion of hypochlorous solution into the abdominal cavity for intra-abdominal sepsis or mucopurulent abscesses or biofilm. Objectives: A 47-year-old man with granulomatosis polyangiitis was started on weekly rituximab. After 4 infusions, skin sloughing, ultimately diagnosed as toxic epidermal necrolysis, developed. During the hospital course, he developed sepsis and bowel perforation necessitating an exploratory laparotomy. The abdomen was left open with a temporary abdominal closure using the Abthera open abdomen negative wound therapy device however, the abdomen remained infected with visually diffuse, thickening mucopurulence despite multiple washouts. Therefore, a VAC Vera-Flo irrigation device was combined with the Abthera open abdomen negative wound therapy device and cyclical irrigation of hypochlorous acid. After 72 hours, the purulence visually was improved and no adverse events were recorded with the placement of intra-abdominal hypochlorous acid. Conclusions: The combination of two medical devices for the intra-abdominal instillation of irrigation is considered off-label from the manufacturers recommendations. In addition, the repeated instillation of hypochlorous acid solution has not been described but was noted to have visually decreased the contaminated effluent within the intra-abdominal fluid.



Journal Cover

Microbe(s): None


Hypochlorous acid (HOCl) demonstrates rapid and broad antimicrobial activity against planktonic and biofilm phenotype bacteria in vitro. To identify the protein content present in breast pockets in vivo and calculate the estimated active concentration of HOCl, (PhaseOne, Integrated Healing Technologies, Franklin, TN) following HOCl-protein interactions. Fluid samples were collected prior to implant insertion in 18 consecutive patients, representing 36 pocket samples, with all cases being bilateral primary breast augmentations. Samples were evaluated by an independent CLIA approved laboratory for albumin and total protein concentration in g/dL. Results were compared to HOCl solution concentration and protein binding potential to determine availability of free HOCl. The mean tissue sample concentration (right and left breast) was 31.6 mg/dL which translates to 0.0001 mmol per 20 cc of interstitial fluid. Mean total protein levels (right and left breast) were 62.3 mg/dL or 0.000187 mmol per 20 cc interstitial fluid. Based upon potential stoichiometric neutralization of HOCl by proteins in either a 1:1 or 3:1 ratio, using 115 cc of HOCl solution (per breast) at a concentration of 250 ppm/mL or 0.025 HOCl or 0.48 mmol HOCl/dL, there would be 2950 times the amount of active HOCl at a 1:1 reaction ratio, or 983 times more HOCl assuming a 3:1 reaction ratio. Based on the range of identified levels of protein in individual surgical pockets in the study, there is an estimated 242 to 12,500 times more HOCl molecules than protein at a 3:1 molar ratio of binding or reactive protein. An estimated range of 983-2950 times more HOCl molecules are present during irrigation with 230 cc of PhaseOne (115 cc for each breast) than available protein. This supports the antimicrobial and anti-biofilm activity as described in previous in vitro studies when using PhaseOne as part of pocket irrigation.



Journal Cover

Microbe(s): Pseudomonas aeruginosa, Enterococcus faecalis, Micrococcus luteus


In the dairy industry, cleaning and disinfection of surfaces are important issues and development of innovative strategies may improve food safety. This study was aimed to optimize the combined effect of alkaline electrolyzed water (AEW) and neutral electrolyzed water (NEW) as s were significantly affected by surface roughness electropolished SSP required 10 min, 100 mg/L AEW at 30 C, whereas SSP without modification required 30 min, 300 mg/L AEW at 30 C. From confirmatory tests cells removed were 3.90 0.25 log CFU/cm2 for electropolished SSP, and 3.20 0.20 log CFU/cm2 for SSP without modification. NEW is non-corrosive, and can be advantageously used for environmentally friendly cleaning and disinfection processes.



Journal Cover

Microbe(s): Escherichia coli, Porphyromonas gingivalis, Enterococcus faecalis, Streptococcus sanguinis


Chemotherapeutic agents have been used as an adjunct to mechanical debridement for peri-implantitis treatment. The present in vitro study evaluated and compared the effectiveness of hypochlorous acid (HOCl), sodium hypochlorite (NaOCl), and chlorhexidine (CHX) at eliminating Gram-negative (E. coli and P. gingivalis) and Gram-positive (E. faecalis and S. sanguinis) bacteria. The effect of irrigating volume and exposure time on the antimicrobial efficacy of HOCl was evaluated, and a durability analysis was completed. Live/dead staining, morphology observation, alamarBlue assay, and lipopolysacLPS) detection were examined on grit-blasted and biofilm-contaminated titanium alloy discs after treatment with the three chemotherapeutic agents. The results indicated that HOCl exhibited better antibacterial efficacy with increasing irrigating volumes. HOCl achieved greater antibacterial efficacy as treatment time was increased. A decrease in antimicrobial effectiveness was observed when HOCl was unsealed and left in contact with the air. All the irrigants showed antibacterial activity and killed the majority of bacteria on the titanium alloy surfaces of biofilm-contaminated implants. Moreover, HOCl significantly lowered the LPS concentration of P. gingivalis when compared with NaOCl and CHX. Thus, a HOCl antiseptic may be effective for cleaning biofilm-contaminated implant surfaces.



Journal Cover

Microbe(s): Total Microbial Count


Product decontamination is one of the most important processes of the hygienic practice in food industries such as Minimally Processed Vegetables (MPV) plants and sodium hypochlorite (NaOCl) solutions are commonly used as a biocide for disinfection. Although it may be corrosive and irritating when compared to , reducing the free chlorine concentration needed to sanitize salads, also decreasing water consumption whilst taking into account environmental and food quality impacts.



Journal Cover

Microbe(s): Enterococcus faecalis


Introduction This study evaluated the bactericidal effect of strong acid electrolyzed water (SAEW) against flow Enterococcus faecalis biofilm and its potential application as a root canal irrigant. Methods Flow E. faecalis biofilms were generated under a constant shear flow in a microfluidic system. For comparison, static E. faecalis biofilms were generated under a static condition on coverslip surfaces. Both the flow and static E. faecalis biofilms were treated with SAEW. Sodium hypochlorite (NaOCl, 5.25) and normal saline (0.9) were included as the controls. Bacterial reductions were evaluated using confocal laser scanning microscopy and the cell count method. Morphological changes of bacterial cells were observed using scanning electron microscopy. Results The confocal laser scanning microscopic and cell count results showed that SAEW had a bactericidal effect similar to that of 5.25 NaOCl against both the flow and static E. faecalis biofilms. The scanning electron microscopic results showed that smooth, consecutive, and bright bacteria surfaces became rough, shrunken, and even lysed after treated with SAEW, similar to those in the NaOCl group. Conclusions SAEW had an effective bactericidal effect against both the flow and static E. faecalis biofilms, and it might be qualified as a root canal irrigant for effective root canal disinfection.



Journal Cover

Microbe(s): Methicillin-resistant Staphylococcus aureus, MRSA


OBJECTIVE: Biofilms represent a key challenge in the treatment of chronic wounds, as they are among the main reasons for delays in chronic wound healing. This in vitro study was aimed at evaluating the activity of a new acid-oxidizing solution (AOS) on biofilm formation. Acid-oxidizing solution contains free chlorine species with stabilized hypochlorous acid in high concentration (> 95) and is RP2). Different approaches were used to assess the prevention and eradication of methicillin-resistant Staphyloccocus aureus biofilm by the study products. Xylitol and chlorhexidine were used as positive controls. The activity of the study products on the biofilm structure was evaluated analyzing the ultrastructural modification by scanning electron microscopy, while skin compatibility was assessed on noncolonized tissues measuring the metabolic activity of the cells. RESULTS: In all experiments, AOS showed to be active on the biofilm matrix, modifying its structure and allowing bacterial release from the matrix. In all experiments, no cytotoxicity was observed in the tissues treated with the product suggesting a good compatibility of AOS with skin tissues. Reference product 1 affected the biofilm, suggesting a disruption effect RP2 was slightly less active than AOS in modifying the biofilm structure. CONCLUSION: Treatment with AOS affects biofilm by modifying its structure and therefore facilitating local bacteria accessibility to bactericidal agents, with consequent potential clinical benefits in the treatment of chronic wounds.



Journal Cover

Microbe(s): Total Microbial Count


Biofilm formation in dental unit water systems (DUWSs) can contaminate water from three-in-one syringes, air rotors, and low-speed handpieces. This may serve as a potential source of infection for dentists, dental staff, and patients, so these systems must be sterilized. Becaslightly acidic electrolyzed water (SAEW) is often used as a disinfectant for food, the aim of this study was to investigate the possibility of using SAEW as a DUWS disinfectant. Slightly acidic electrolyzed water was injected into a dental unit and its effects evaluated. Chemical properties such as chlorine ion and potential hydrogen in the SAEW were measured. Detection of both ordinary and heterotrophic bacteria from the DUWS was performed by culture, and biofilm formation of the bacteria in the DUWS evaluated. Polymerase chain reaction (PCR) was used to detected contamination by nosocomial pathogens. Almost all the chlorine ions in the SAEW were exhausted during the two-day trials, and the pH value of the SAEW fell from 5 to 4. No viable cells were detected in the SAEW collected. Biofilm formation in the water from the DUWS with SAEW was almost at a baseline level, whereas that without SAEW was 4 times higher. The PCR analysis showed that no nosocomial infecting pathogens were detected in the SAEW. The present study demonstrated the antiseptic effect of SAEW in DUWS.



Journal Cover

Microbe(s): Total Microbial Count


Introduction. Chronic wounds and the infections associated with them are responsible for a considerable escalation in morbidity and the cost of health care. Infection and cellular activation and the relation between cells are 2 critical factors in wound healing. Since chronic wounds offer ideal conditions for infection and biofilm production, good wound care strategies are critical for wound healing. Topical antiseptics in chronic wounds remain in widespread today. These antiseptics are successful in microbial eradication, but their cytotoxcity is a controversial issue in wound healing. Objective. The aim of this study was to investigate the effect of stabilized hypochlorous acid solution (HOCl) on killing rate, biofilm formation, antimicrobial activity within biofilm against frequently isolated microorganisms and migration rate of wounded fibroblasts and keratinocytes. Materials and Methods. Minimal bactericidal concentration of stabilized HOCl solution for all standard microorganisms was 1/64 dilution and for clinical isolates it ranged from 1/32 to 1/64 dilutions. Results. All microorganisms were killed within 0 minutes and accurate killing time was 12 seconds. The effective dose for biofilm impairment for standard microorganisms and clinical isolates ranged from 1/32 to 1/16. Microbicidal effects within the biofilm and antibiofilm concentration was the same for each microorganism. Conclusion. The stabilized HOCl solution had dose-dependent favorable effects on fibroblast and keratinocyte migration compared to povidone iodine and media alone. These features lead to a stabilized HOCl solution as an ideal wound care agent.



Journal Cover

Microbe(s): Staphylococcus epidermidis


The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.



Journal Cover

Microbe(s): Listeria monocytogenes


The presence of Listeria monocytogenes in food processing environment is a risk of food contamination by persistent cells due to their ability to attach to stainless steel and other surfaces. We aimed to study biofilms formation of lux-tagged L. monocytogenes EGDe on stainless steel surfaces and their control using neutral electrolyzed water (NEW), where biofilms development was monitored using destructive and non-destructive microscopy techniques. The development of biofilms was monitored for 5 days on stainless steel chips. We used two sources of NEW, commercial (NEW-1) and from a prototype (NEW-2) for treatments of free and biofilm L. monocytogenes EGDe cells. Complete inhibition of L. monocytogenes EGDe free cells was observed after 1 min contact time for both NEW sources, but NEW-1 concentration used (9 mg/L total available chlorine, TAC) was 1.8 times higher. Cells within biofilms were more resistant to NEW compared to planktonic cells. Same concentration of both NEW sources (70 mg/L TAC) exhibited complete inhibition of biofilm cells after 3 min contact time. However, using a sub-lethal dose of 40 mg/L TAC, NEW-2 reduced about 2 log CFU/cm2 biofilm cells while NEW-1 inhibited 0.3 log CFU/cm2 only. Biofilms formation and antagonistic effect of NEW could be visualized by epifluorescence and scanning electron microscopy, revealing significant biofilms structure. The disinfectant effect of NEW may be attributed to the combined antimicrobial effect of available chlorine and high ORP exhibited by its oxidizing compounds. NEW does not promote metal equipment corrosion due to its neutral pH, and is also environmentally friendly.



Journal Cover

Microbe(s): Listeria monocytogenes, Morganella morganii


Listeria monocytogenes and Morganella morganii have been implicated in listeriosis outbreaks and histamine fish poisoning, respectively. Possible sources of contamination of food products include processing equipment, food handlers, and fish smokehouses. Treatment of food preparation surfaces and of whole fish during handling with agents such as, electrolyzed oxidizing (EO) water, could reduce biofilm formation on seafood products and in seafood processing plants. We examined the efficacy of EO water against L. monocytogenes and M. morganii biofilms using the MBEC Assay System (Innovotech Inc.), conveyor belt coupons, and raw fish surfaces. The MBEC Assay System was used to assess the activity of EO water against 24-h biofilms of 90 L. monocytogenes strains and five M. morganii strains. Biofilms were exposed to PBS or EO water for 0 (control), 5, 15, and 30 min. All bacterial isolates were susceptible (reduction of 7 log10CFU) to treatment with EO water for 5 min based on results obtained using this assay system. EO water was used to treat four L. monocytogenes strains and one M. morganii strain attached to conveyor belt coupons and fish surfaces. Three L. monocytogenes strains and one M. morganii strain on belt coupons were reduced by 12.5 log10CFU/cm2 by exposure (5 min) to EO water compared to exposure to sterile distilled water. Strain to strain variability in susceptibility to EO water was evidenced by the fact that numbers of one L. monocytogenes strain were not reduced by EO water treatment of belt surfaces. EO water was not effective against L. monocytogenes and M. morganii on fish surfaces as growth occurred during cold storage. These results suggest that exposure of conveyor belts to EO water for a minimum of 5 min could assist in the removal of some biofilms. Removal of food residue with continuous or intermittent spraying of food processing equipment (e.g., conveyor belts, slicers) could reduce or prevent further biofilm formation. Additional sanitizers must be investigated for activity against bacteria associated with raw fish.



Journal Cover

Microbe(s): Staphylococcus aureus


Staphylococcus aureus is a major pathogen. It can form biofilm on the surfaces of medical devices and food equipment, which makes it more difficult to eradicate. To develop a novel method to eradicate S. aureus biofilm, the effects of electrolyzed water on removing and killing S. aureus biofilm were investigated in this study. By using a biofilm biomass assay with safranin staining and visualization of biofilm architecture with scanning electron microscopy, it was shown that basic electrolyzed water (BEW) could effectively remove established biofilm. The pH of electrolyzed water affected removal efficacy. Using a biofilm viability assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining, acidic electrolyzed water (AEW) efficiently killed biofilm-imbedded S. aureus. The available chlorine in AEW may be a main contributing factor for bactericidal activity. Additionally, BEW had a removal efficacy for S. aureus biofilm equivalent to 2% NaOH, and AEW had a bactericidal capability for S. aureus in biofilm equivalent to 2% HCl. These data suggested that AEW and BEW could be applied as a bactericide and removing agent for S. aureus in biofilm, respectively.



Journal Cover

Microbe(s): Listeria monocytogenes


All food processing surfaces are potential sites for biofilm formation of foodborne pathogens, which may result in increased virulence and better adaptation to survival in foods. This study was aimed to evaluate the effect of two antimicrobials, neutral electrolyzed water (NEW) and nisin, and their combination, on Listeria monocytogenes Scott A biofilms formed on glass and stainless steel surfaces. We also examined the effects of sub-lethal doses of NEW on listeriolysin O (LLO) activity from free and biofilm listerial cells. Coupons inoculated with L. monocytogenes cells were used to produce biofilms by incubation for four days at 37 C. An orthogonal experimental design with two replicates was used to test the effect of four factors on biofilm population. The factors were antimicrobial agents: NEW (65 ppm), nisin (6976 IU/per coupon), and their combination; temperature: 20 C and 37 C; contact time: 5, 10, 20 and 45 min; and type of material: glass or stainless steel. Antimicrobial compounds and exposure time significantly affected L. monocytogenes populations in biofilms from both surfaces. A bactericidal effect was shown by NEW on free listerial cells at 30 ppm for 0.5 min of exposure, regardless treatment temperature. Same effect was observed on listerial biofilms at 65 ppm or higher concentrations, after 10 min contact time. A sub-lethal concentration of NEW acting on listerial biofilms resulted in an increased LLO activity, while non-treated biofilms exhibited a reduced activity, but higher than that found for free cells. The use of NEW as a sanitizer may be effective in reducing bacterial contamination. In addition because of its safety, which would benefit the food industry and its environmental friendliness, NEW may be of significant use in the food industry.



Journal Cover

Microbe(s): Escherichia coli O157:H7


This study compared the efficacy of chlorine (20 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 200 ppm chlorite ion concentration, Sanova ), and aqueous chlorine dioxide (20 200 ppm chlorite ion concentration, TriNova ) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova , Sanova , and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of ~ 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.



Journal Cover

Microbe(s): Listeria monocytogenes


The ability of electrolyzed (EO) water to inactivate Listeria monocytogenes in suspension and biofilms on stainless steel in the presence of organic matter (sterile filtered chicken serum) was investigated. A five-strain mixture of L. monocytogenes was treated with deionized, alkaline EO, and acidic EO water containing chicken serum (0, 5, and 10 ml/liter) for 1 and 5 min. Coupons containing L. monocytogenes biofilms were also overlaid with chicken serum (0, 2.5, 5.0, and 7.5 ml/liter) and then treated with deionized water, alkaline EO water, acidic EO water, alkaline EO water followed by acidic EO water, and a sodium hypochlorite solution for 30 and 60 s. Chicken serum decreased the oxidation-reduction potential and chlorine concentration of acidic EO water but did not significantly affect its pH. In the absence of serum, acidic EO water containing chlorine at a concentration of 44 mg/liter produced a > 6-log reduction in L. monocytogenes in suspension, but its bactericidal activity decreased with increasing serum concentration. Acidic EO water and acidified sodium hypochlorite solution inactivated L. monocytogenes biofilms to similar levels, and their bactericidal effect decreased with increasing serum concentration and increased with increasing time of exposure. The sequential 30-s treatment of alkaline EO water followed by acidic EO water produced 4- to 5-log reductions in L. monocytogenes biofilms, even in the presence of organic matter.



Journal Cover

Microbe(s): Listeria monocytogenes


Biofilms are potential sources of contamination to food in processing plants, because they frequently survive sanitizer treatments during cleaning. The objective of this research was to investigate the combined use of alkaline and acidic electrolyzed (EO) water in the inactivation of Listeria monocytogenes biofilms on stainless steel surfaces. Biofilms were grown on rectangular stainless steel (type 304, no. 4 finish) coupons (2 by 5 cm) in a 1:10 dilution of tryptic soy broth that contained a five-strain mixture of L. monocytogenes for 48 h at 25 C. The coupons with biofilms were then treated with acidic EO water or alkaline EO water or with alkaline EO water followed by acidic EO water produced at 14 and 20 A for 30, 60, and 120 s. Alkaline EO water alone did not produce significant reductions in L. monocytogenes biofilms when compared with the control. Treatment with acidic EO water only for 30 to 120 s, on the other hand, reduced the viable bacterial populations in the biofilms by 4.3 to 5.2 log CFU per coupon, whereas the combined treatment of alkaline EO water followed by acidic EO water produced an additional 0.3- to 1.2-log CFU per coupon reduction. The population of L. monocytogenes reduced by treatments with acidic EO water increased significantly with increasing time of exposure. However, no significant differences occurred between treatments with EO water produced at 14 and 20 A. Results suggest that alkaline and acidic EO water can be used together to achieve a better inactivation of biofilms than when applied individually.



Journal Cover

Microbe(s): Listeria monocytogenes, Flavobacterium spp.


Aims: To determine the effect of chlorine on mixed bacterial biofilms on stainless steel (SS) and conveyor belt surfaces. Methods and Results: Biofilms were exposed to pH-adjusted (6.5) and non-pH-adjusted solutions of chlorine (200, 400 and 600 ppm) for either 2, 10 or 20 min and survivors enumerated. There were significant differences in cell death relating to chlorine concentration and exposure time for the cells attached to the SS, with solutions adjusted to pH 6.5 being more effective at reducing numbers. In contrast, on conveyor belt surfaces cell numbers decreased by less than two logs after 20 min regardless of treatment. Conclusions: Chlorine effectiveness is dependent on its concentration, solution pH, exposure time, the nature of the surface and the microbial species present. Significance and Impact of Study: In the interests of food safety it is important that sanitizer users are aware of the conditions that effect their performance.



Journal Cover

Microbe(s): Total Microbial Count


The disinfectant effect of acidic electrolyzed water (AcEW), ozonated water, and sodium hypochlorite (NaOCl) solution on lettuce was examined. AcEW (pH 2.6; oxidation reduction potential, 1140 mV; 30 ppm of available chlorine) and NaOCl solution (150 ppm of available chlorine) reduced viable aerobes in lettuce by 2 log CFU/g within 10 min. For lettuce washed in alkaline electrolyzed water (AlEW) for 1 min and then disinfected in AcEW for 1 min, viable aerobes were reduced by 2 log CFU/g. On the other hand, ozonated water containing 5 ppm of ozone reduced viable aerobes in lettuce 1.5 log CFU/g within 10 min. It was discovered that AcEW showed a higher disinfectant effect than did ozonated water significantly at P < 0.05. It was confirmed by swabbing test that AcEW, ozonated water, and NaOCl solution removed aerobic bacteria, coliform bacteria, molds, and yeasts on the surface of lettuce. Therefore, residual microorganisms after the decontamination of lettuce were either in the inside of the cellular tissue, such as the stomata, or making biofilm on the surface of lettuce. Biofilms were observed by a scanning electron microscope on the surface of the lettuce treated with AcEW. Moreover, it was shown that the spores of bacteria on the surface were not removed by any treatment in this study. However, it was also observed that the surface structure of lettuce was not damaged by any treatment in this study. Thus, the use of AcEW for decontamination of fresh lettuce was suggested to be an effective means of controlling microorganisms.



Journal Cover

Microbe(s): Listeria monocytogenes


This study investigates the resistance of Listeria monocytogenes biofilms on stainless steel surfaces to electrolyzed oxidizing (EO) water. A direct agar overlay method was used to estimate the attached bacteria on stainless steel coupons after an EO water treatment. A scraping method was also used to quantify the adherent cell populations after the EO water treatment. The stainless steel surface allowed 10 to 15% of the surface area to be covered by Listeria biofilm when the inoculated stainless steel coupon was incubated in 10% tryptic soy broth (TSB) at 23C for 48 h. When the stainless steel coupons containing adherent cells were treated with EO water (56 mg/L of residual chlorine) for 10, 30, 60, 180, and 300 s, adherent cell populations (10.3 log10 CFU/coupon) were reduced with increasing treatment time. Although the direct agar overlay methods do not quantify survival of single bacteria, only one to five cell clumps per coupon survived after 300 s of the EO water treatment. Using the scraping method, the adherent cell population on the stainless steel coupons was reduced by about 9 log cycles after 300 s of EO water treatment.



Journal Cover

Microbe(s): Total Microbial Count


The disinfectant effect of acidic electrolyzed water (AcEW), ozonated water, and sodium hypochlorite (NaOCl) solution on lettuce was examined. AcEW (pH 2.6; oxidation reduction potential, 1140 mV; 30 ppm of available chlorine) and NaOCl solution (150 ppm of available chlorine) reduced viable aerobes in lettuce by 2 log CFU/g within 10 min. For lettuce washed in alkaline electrolyzed water (AlEW) for 1 min and then disinfected in AcEW for 1 min, viable aerobes were reduced by 2 log CFU/g. On the other hand, ozonated water containing 5 ppm of ozone reduced viable aerobes in lettuce 1.5 log CFU/g within 10 min. It was discovered that AcEW showed a higher disinfectant effect than did ozonated water significantly at P < 0.05. It was confirmed by swabbing test that AcEW, ozonated water, and NaOCl solution removed aerobic bacteria, coliform bacteria, molds, and yeasts on the surface of lettuce. Therefore, residual microorganisms after the decontamination of lettuce were either in the inside of the cellular tissue, such as the stomata, or making biofilm on the surface of lettuce. Biofilms were observed by a scanning electron microscope on the surface of the lettuce treated with AcEW. Moreover, it was shown that the spores of bacteria on the surface were not removed by any treatment in this study. However, it was also observed that the surface structure of lettuce was not damaged by any treatment in this study. Thus, the use of AcEW for decontamination of fresh lettuce was suggested to be an effective means of controlling microorganisms.