Research > Microbe > Viruses > HIV

Common Names for Hypochlorous Acid Solutions

  • Electrolytically Generated Hypochlorous Acid
  • Neutral Electrolyzed Water (NEW)
  • Electrolyzed Oxidizing Water (EOW)
  • Electro-chemically Activated Water (ECA)
  • Super-oxidized water (SOW)

Results: 2 published articles

Journal Cover

Microbe(s): Viruses, HIV

Electrolyzed products of a sodium chloride solution contain free residual chlorine and have been proved to be effective for disinfection. Electrolyzed strong acid water containing a low sodium chloride concentration (ESW-L) is prepared by the electrolysis of a solution containing a low sodium chloride concentration (0.1% or less). Although ESW-L has been confirmed to be an effective disinfectant, disinfective efficacy against dried HIV-1 and a target of ESW-L against HIV-1 have not been clarified. In this study, we attempted to demonstrate the efficacy of ESW-L against dried HIV-1 which relatively resists disinfection and to analyze disinfection target. We demonstrated that ESWL inactivated the infectivity of dried HIV-1. In the analysis of the mechanism of disinfection, although the HIV-1 structural protein, p24 within the virus particle, was not inactivated by ESW-L, the enzymatic activity of reverse transcriptase (RT) and genomic RNA within the particle, however, were inactivated after the treatment with ESW-L. These findings suggest that the enzymatic activity of RT and genomic RNA are the target of ESW-L.

Journal Cover

Microbe(s): Viruses, Hepatitis B Virus, HIV

Electrolyzed products of sodium chloride solution were examined for their disinfection potential against hepatitis B virus (HBV) and human immunodeficiency virus (HIV) in vitro. Electrolysis of 0.05% NaCl in tap water was carried out for 45 min at room temperature using a 3 A electric current in separate wells installed with positive and negative electrodes. The electrolyzed products were obtained from the positive well. The oxidation reduction potential (ORP), pH and free chlorine content of the product were 1053 mV, pH 2.34 and 4.20 ppm, respectively. The products modified the antigenicity of the surface protein of HBV as well as the infectivity of HIV in time- and concentration-dependent manner. Although the inactivating potential was decreased by the addition of contaminating protein, recycling of the product or continuous addition of fresh product may restore the complete disinfection against bloodborne pathogens.